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Weakly nonlinear internal gravity wavepackets
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Horizontally periodic, vertically localized internal wavepackets evolve nonlinearly
due only to interactions between the waves and their wave-induced mean flow. The
corresponding weakly nonlinear equation that describes the evolution of the amplitude
envelope before the onset of parametric subharmonic instability is examined. The
results are compared with fully nonlinear numerical simulations and are shown to
lie in excellent agreement for over 15 buoyancy periods. Analysis of the equation
shows that the evolution is modulationally unstable if the wave frequency exceeds
that of waves with the fastest vertical group speed and if the amplitude is sufficiently
large. Waves that move close to the fastest vertical group speed are unstable even
if their relative amplitude is a tiny fraction of the inverse relative vertical extent of
the wavepacket. At late times in the evolution of an unstable wavepacket third-order
dispersion terms become non-negligible and act in conjunction with weakly nonlinear
effects to retard the vertical advance of the wavepacket as a whole.

1. Introduction
Internal waves move through a continuously stratified fluid vertically transporting

energy and momentum, exerting drag and turbulently mixing where they break.
The behaviour of small-amplitude waves is well-established, and some qualitatively
different aspects of finite-amplitude waves have been revealed through laboratory
experiments, analytic theories and fully nonlinear numerical simulations.

For example, monochromatic waves are unstable to parametric subharmonic
instability (Klostermeyer 1991; Lombard & Riley 1996; Benielli & Sommeria 1996;
Koudella & Staquet 2006). Such waves interact with themselves, transferring energy
to longer time-scale, shorter spatial-scale waves. Wavepackets that are horizontally
periodic but vertically localized additionally exhibit a phenomenon known as ‘self-
acceleration’ (Fritts & Dunkerton 1984; Sutherland 2001). This results from the waves
interacting with themselves to induce a mean flow which itself modifies the structure
of the waves.

If the waves are of such large amplitude that the wave-induced mean flow
exceeds the horizontal group velocity then they exhibit self-acceleration instability,
meaning that the interaction eventually causes the waves to overturn and break
(Sutherland 2001). At smaller but non-negligible amplitudes, the interaction modifies
the structure of the amplitude envelope through weakly nonlinear dynamics. If the
amplitude envelope grows in time, the waves are said to be modulationally unstable.
Numerical simulations have shown that the time scale for self-acceleration is faster
than parametric subharmonic instability where the amplitude envelope encompas-
sing the wavepacket has non-negligible curvature (Sutherland 2006b). Therefore
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self-acceleration, not wave–wave interactions, should be primarily responsible for
the initial weakly nonlinear-governed wavepacket modulation.

The purpose of this paper is to examine a weakly nonlinear equation that
describes the evolution of these wavepackets and thereby to establish bounds on
the modulational stability of the waves as they depend upon frequency, amplitude
and wavepacket extent.

Weakly nonlinear equations have been derived by Grimshaw (1975) for vertical
modes in a channel that are modulated horizontally and by Tabaei & Akylas (2003)
for weakly viscous internal wave beams emanating from a localized oscillating object.
A straightforward perturbation theory approach for horizontally periodic internal
waves in uniformly stratified fluid, which is akin to that for finite-amplitude surface
and interfacial internal waves (Thorpe 1968), fails. This is because monochromatic
plane internal gravity waves are an exact solution of the fully nonlinear equations of
motion.

Nonetheless, it is well-established that horizontally periodic internal wavepackets
induce a mean flow which is analogous to the Stokes drift for surface waves. Using
Hamiltonian fluid mechanics, Scinocca & Shepherd (1992) derived a formula for the
pseudomomentum of internal waves. For Boussinesq waves in particular, the wave-
induced mean flow (which is the pseudomomentum per unit mass) is given at leading
order by

U (z, t) ≡ − 〈ξζ 〉, (1.1)

in which ξ is the vertical displacement, ζ = ∂zu − ∂xw is the vorticity, and the angle
brackets denote averaging over one horizontal wavelength.

Fully nonlinear numerical simulations have demonstrated that (1.1) accurately
represents the mean horizontal motion due to waves even when the waves are close
to breaking amplitude (Sutherland 2001). The mean flow is established as soon as the
waves are generated, whether at a solid boundary or within the fluid by a dynamic
source. Thus shear-generated waves transport momentum, as can be measured by the
wave-induced mean flow associated with them (Sutherland 2006).

Fully nonlinear numerical simulations (not shown) demonstrate that waves, even
if created by a moving, horizontally periodic heat source, which propagate away
induce a mean flow and that in order to conserve momentum this flow is exactly
compensated for by a reverse flow at the level of the source.

To model the interaction between waves and the wave-induced mean flow, equations
have been derived for weakly nonlinear three-dimensional wavepackets (Shrira 1981),
for finite-amplitude wavepackets (Akylas & Tabaei 2005) and wavepackets that
experience the effects of weak background rotation (Akylas, private communication).

In § 2. we explicitly use (1.1) to write a weakly nonlinear equation for horizontally
periodic, vertically localized internal wavepackets. The formula includes higher-order
linear dispersion terms, which are shown to influence the nonlinear evolution of
non-hydrostatic waves non-negligibly . After describing the numerical methods in § 3
the results of weakly nonlinear theory are compared with fully nonlinear numerical
simulations in § 4. In § 5 the stability of weakly nonlinear wavepackets is assessed,
and the the major results are summarized in § 6.

2. Theory
The fully nonlinear equations describing the motion of inviscid Boussinesq two-

dimensional internal waves in a non-rotating environment are given in terms of total
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streamfunction, ψT , and total density, ρT , by

D∇2ψT

Dt
= g

∂ρT

∂x
(2.1)

and
DρT

Dt
= 0. (2.2)

The former describes how vorticity is generated by the baroclinic torque; the latter
describes the conservation of mass for an incompressible fluid. In both, D/Dt = ∂t +
uT ∂x + wT ∂z is the material derivative constructed from the components of the
total horizontal and vertical velocity, uT = − ∂zψT and wT = ∂xψT , respectively. The
associated vorticity field is ζT ≡ ∂zuT − ∂xwT = − ∇2ψT .

The total density can be decomposed into a background density, ρ̄(z), and a
fluctuation density, ρ(x, z, t). Here we will assume the fluid is uniformly stratified so
that the squared buoyancy frequency, given by N2 ≡ −(g/ρ0)dρ̄/dz, is constant. In
this circumstance, the vertical displacement field, ξ , is proportional to the fluctuation
density:

ξ = −
(

dρ̄

dz

)−1

ρ. (2.3)

Likewise, the total velocity field can be decomposed into the sum of a mean
horizontal flow, Ū , and the fluctuation velocity (u, w). Although in practice the
background flow can be an arbitrary function of z, here we will assume there is no
background horizontal flow in the absence of waves and that it is non-zero only as a
result of the mean flow, U , induced by waves. That is, Ū ≡ U , in which U is given by
(1.1). Unlike the usual definition of a background flow, here U is a function not only
of space but of time.

Finally, we will assume that the initial weakly nonlinear evolution involves
interactions only between waves and the wave-induced mean flow.

Explicitly, we write

f = Re{Af (z, t) exp[i(kx + mz − ωt)]} (2.4)

in which f represents any one of the fluctuation fields, ψ , ξ , ζ , etc., and Re
denotes the real part. Af (z, 0) describes the structure of the initial amplitude envelope
which encompasses waves with constant wavenumber vector components k (assumed
positive) and m. The fast-time evolution is assumed to be set by a constant frequency
ω which is given by the dispersion relation,

ω = N
k

κ
= N cosΘ, (2.5)

in which κ ≡ (k2 + m2)1/2. |Θ | is the angle formed by lines of constant phase with the
vertical. Explicitly defining Θ = tan−1(m/k), the sign of Θ equals the sign of m.

Substituting (2.4) in (1.1) with f ≡ ξ and ζ gives

U (z, t) = − 1
2
Re{AξAζ

	}. (2.6)

Putting these results in (2.1) and extracting the coefficients of the exp[i(kx+mz−ωt)]
terms gives

{[∂t − i(ω − kU )][∂zz + 2im∂z − κ2] + ik∂zzU}Aψ = −ikN2Aξ . (2.7)
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Similarly, (2.2) and (2.3) combine to give

{∂t − i(ω − kU )}Aξ = ikAψ. (2.8)

Eliminating Aψ from these two equations gives the evolution equation for Aξ :

{[∂t − i(ω − kU )][∂zz + 2im∂z − κ2] + ik∂zzU}[∂t − i(ω − kU )]Aξ = k2N2Aξ . (2.9)

For infinitesimally small-amplitude waves, U is negligibly small. Assuming the
vertical extent, σ , of the wavepacket is broad so that ε ≡ 1/(kσ ) � 1, standard
perturbation methods (e.g. Whitham 1974) reproduce the linear Schrödinger equation.
If the maximum vertical displacement, A0, is so large that α ≡ kA0 is of order ε,
then perturbation theory at next order reveals that this equation is modified through
the addition of a term which represents the Doppler-shifting of the waves by the
wave-induced mean flow. In a frame of reference moving with the vertical group
speed c = − (N/k) cos2Θ sinΘ , the resulting equation for Aξ is

∂tAξ = i1
2
cm∂ZZAξ + 1

6
cmm∂ZZZAξ − ikUAξ . (2.10)

Here cm = − (N/k2) cos3Θ(1 − 3 sin2Θ) and cmm =3(N/k3) cos4Θ sinΘ(3 − 5 sin2Θ)
are the second and third partial derivatives, respectively, of ω with respect to m, and
Z ≡ z − ct denotes the moving vertical coordinate.

Equation (2.10) includes the third-order Z-derivative term, which results from
including the next-order ε terms in the perturbation expansion. This accounts for the
dispersion of waves having frequency ω � ωc ≡ N(2/3)1/2, for which cm = 0.

The corresponding equation for vorticity has the form of (2.10) but with ξ replaced
by ζ . Together with (1.1), this forms a closed coupled system of equations for ξ and
ζ . However, the symmetry of the equations implies that if initially Aζ = CAξ for some
constant C, then this proportionality relationship holds for all time. This is confirmed
by explicit numerical solutions of the coupled equations.

Linear theory gives the leading-order approximation to the proportionality constant:
C = −Nκ . Thus U = Nκ |A|2/2 and the weakly nonlinear evolution of a horizontally
periodic, vertically localized internal wavepacket is represented well by a single
differential equation in one variable:

At = i1
2
cmAZZ + 1

6
cmmAZZZ − i 1

2
Nk2 secΘ |A|2A. (2.11)

Here, for notational convenience, we have defined A ≡ Aξ and denoted partial
derivatives by subscripts.

Weakly nonlinear vertically localized, horizontally-periodic internal waves are
therefore governed by a nonlinear Schrödinger equation in which the nonlinear
term has a pure imaginary coefficient and the linear dispersive terms can be positive
or negative depending upon the value of Θ . Neglecting the AZZZ term in (2.11),
the resulting equation is a special case of the formulae derived by Akylas & Tabaei
(2005).

3. Numerical methods
In what follows, we compare the numerically integrated solutions of the weakly

nonlinear equation (2.11) with the results of fully nonlinear numerical simulations. In
practice, the length and time scales are set by assigning k = 1 and N =1, although the
results here will be presented explicitly in terms of k and N or, where convenient, of
the corresponding horizontal wavelength λx and buoyancy period TB .
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m/k Θ (deg.) ω/N
k

N
c

k2

N
cm

k3

N
cmm

k

N

1

α2
U0

−0.4 −21.8 0.92 0.32 −0.469 −1.91 0.54
−0.7 −35.0 0.82 0.38 −0.007 −1.05 0.61
−1.4 −54.5 0.58 0.27 0.194 0.09 0.86

Table 1. Parameters and weakly nonlinear equation coefficients used for the simulations
presented here.

We focus upon the evolution of Gaussian wavepackets with vertical displacement
field given initially by

ξ (x, z, 0) = A(z, 0) cos(kx + mz) with A(z, 0) = A0e
−z2/2σ 2

. (3.1)

We take ε ≡ 1/(kσ ) = 0.1 throughout and the internal wavepacket evolution is
determined as it depends upon α ≡ kA0 and the relative vertical wavenumber m/k.
The parameters for the featured simulations are given in table 1. These are chosen to
illustrate the dependence of the qualitative difference between the evolution of small-
and large-amplitude wavepackets upon the wave frequency, whether it be below,
near, or above the critical frequency, ωc, of waves having the largest vertical group
speed. The amplitudes examined are as large as α = 0.3 (A0 � 0.048λx), which is close
to the amplitude at which the waves are prone to breaking due to self-acceleration
(Sutherland 2001).

The initial wave-induced mean flow is

U (z, 0) = U0e
−z2/σ 2

with U0 =
1

2

N

k
α2 secΘ. (3.2)

It is possible to correct A iteratively for the initial effects of Doppler-shifting by
the background flow. However, this is not done here because the change is negligibly
small even for α as large as 0.3.

Centred finite differencing is used to compute derivatives in (2.11), and the field
is advanced in time using the leapfrog method with an Euler backstep taken every
20 steps to avoid splitting errors. Typical runs are performed on a horizontally
periodic domain having free-slip upper and lower boundary conditions, spanning
|Z| � 102.4k−1 with a resolution of 0.4k−1. Fields are advanced in time by 0.001N−1

up to t = 150N−1 (about 24 buoyancy periods). Doubling the resolution makes a
negligible difference to the results.

The fully nonlinear numerical simulation solves (2.1) and (2.2) with an additional
Laplacian diffusion term added to the right-hand side of each equation, as has been
described by Sutherland (2006). This is necessary to ensure numerical stability, but the
corresponding Reynolds and Schmidt numbers based on the horizontal wavenumber
and buoyancy frequency are set to be large enough that diffusion plays a negligible role
over the duration of the simulations. The calculations are performed in a stationary,
(z, t), frame of reference, and the output is transformed to (Z, t) variables through
the translation Z = z − ct .

4. Results
First the results of fully nonlinear numerical simulations are presented. Figure 1

shows the evolution of a small- and large-amplitude wavepacket with m = −0.4k.
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Figure 1. Results of fully nonlinear numerical simulation of a wavepacket given initially
by (3.1) with ε−1 ≡ kσ = 10, m= −0.4k and (a) α = 0.01 and (b) α = 0.3. In both cases the
left panel shows greyscale contours of the normalized vertical displacement field ξ/λx at
time t = 50N−1 and the right panel plots U relative to the predicted horizontal phase speed
cpx = ω/k at this time (solid line) and at time t = 0 (dashed line).

The small-amplitude wavepacket (figure 1a), which is initially centred about z =0,
propagates upwards at a nearly constant speed equal to the vertical group speed. At
time t = 50N−1 it is centred about z = ct � 16k−1 � 2.5λx . Comparing the initial and
final profiles of U , the wavepacket amplitude is found to decrease moderately while
its extent broadens, as anticipated from linear theory.

The late-time structure of the large-amplitude wavepacket, shown in figure 1(b), is
qualitatively different. Rather than broadening, the wavepacket decreases in vertical
extent and the amplitude increases. The fine structure also becomes more complex
with constant-phase lines tilting closer to the vertical near the vertical midpoint of
the wavepacket.

By comparison with figure 1(b), figure 2(a) shows that the weakly nonlinear
equations are able to capture the essential features of the fully nonlinear evolution
at this time. The greyscale image shows normalized contours of ξ (x, z, 50N−1), which
are computed from the amplitude envelope through the relationship (2.4) with f ≡ ξ .
Likewise, the wave-induced mean flow is plotted against z = Z + ct .

Figures 2(b) and 2(c) show the corresponding plots at time t = 50N−1 of the real
and imaginary parts of A and of its magnitude, |A|, respectively. These are plotted
against Z instead of z and so represent the structure of the wavepacket in a frame of
reference moving with the vertical group speed. The fact that the peak amplitude lies
moderately below Z = 0 is an indication that weakly nonlinear effects decelerate the
progress of the wavepacket in this instance.

The fully nonlinear evolution over time of the wavepacket breadth and amplitude
is represented by time series of U (Z, t) in six simulations, as shown in figure 3. In
each case, the correlation − 〈ξζ 〉 is computed at successive times and each result in
translated from z to Z = z − ct coordinates.

In the three simulations of small-amplitude wavepackets, shown in figure 3(a–c),
the flow is peaked along Z = 0 for all time, confirming that these wavepackets move
upward at the vertical group speed predicted by linear theory. The simulation with
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Figure 2. Solution of weakly nonlinear equations corresponding to simulation shown in
figure 1(b). (a) Greyscale contours of the normalized vertical displacement field ξ/λx at time
t =50N−1 and plot of U relative to the predicted horizontal phase speed cpx =ω/k at this
time. The remaining panels show the real (solid line) and imaginary (dashed line) parts of (b)
kA(Z, T ) and (c) k|A(Z, T )| taken at T = t =50N−1 and with Z = z − ct .
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Figure 3. Time series of normalized wave-induced mean flow U (Z, t)/U0 in fully nonlinear
numerical simulations with α =0.01 and (a) m= −0.4k, (b) m= −0.7k, (c) m= −1.4k and with
α = 0.30 and (d) m= −0.4k, (e) m= −0.7k, f) m= −1.4k.
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Figure 4. As in figure 3(d–f ), but for U/U0 computed from the weakly nonlinear equation.

m = −0.4k exhibits the most dispersion through the broadening and decrease in peak
amplitude of the wavepacket.

The behaviour of the corresponding large-amplitude wavepackets is qualitatively
different. In simulations with α = 0.3 and m = −0.4k (figure 3d) and m = −0.7k

(figure 3e) the maximum value of the wave-induced mean flow more than doubles
whereas in the simulation with m = −1.4k (figure 3f ) the maximum value drops by
more than half due to nonlinearly enhanced dispersion. Another notable feature of the
large-amplitude simulations with m = −0.4k and −0.7k is the deceleration of the wave-
packet relative to the vertical group speed. In particular, the peak value of U moves
downward at a relative rate of −0.25N/k whose magnitude is comparable with c.

These qualitative, and most of these quantitative, features are captured by the
corresponding solutions of the weakly nonlinear equation (2.11). As expected, the
linear dispersion of the wavepacket is represented well in the solution computed for
small-amplitude wavepackets (not shown). Comparing figures 4(a–c) with figures 3(d–
f ), respectively, the weakly nonlinear equations are found to represent well the
nonlinearly enhanced broadening of the wavepacket with m = −1.4k and the
amplitude growth, envelope narrowing and vertical deceleration of wavepackets with
m = −0.4k and −0.7k. Discrepancies appear at late times because subharmonic wave
excitation, which results in fine vertical-scale structures, is not captured by (2.11).

Test studies (not shown) demonstrate that all three terms on the right-hand side
of (2.11) are necessary to capture the evolution of non-hydrostatic internal waves.
Because the wavepacket evolves so that it narrows, the third-order Z-derivative term
eventually approaches the same order as the second-order Z-derivative term. The
asymmetry introduced by the third-order derivatives is ultimately what is responsible
for the vertical deceleration of the wavepacket as a whole. These observations are
quantified in the next section.

5. Analysis
To gain further insight into the behaviour of the weakly nonlinear solutions we

examine the initial temporal evolution of the amplitude envelope through its effect
upon the wave-induced mean flow. Assuming that A is real-valued initially gives

∂tU |t=0 = 1
6
Nkcmm secΘAAZZZ. (5.1)

Because the coefficients of the AZZ and the nonlinear terms are pure-imaginary,
they do not affect the first-order time-derivative. Equation (5.1) predicts that the
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Figure 5. Solid lines delineate stability regimes for a Gaussian wavepacket as they depend
upon the relative wave frequency, measured by Θ = cos−1(ω/N ), and the relative amplitude,
measured by α/ε = A0σk2. Greyscale contours show the normalized inverse time scale
associated with the growth (τ−1 > 0) or decay (τ−1 < 0) of the amplitude envelope.

amplitude of a Gaussian wavepacket grows on the trailing flank of the wavepacket
if |Θ | < sin−1(3/5)1/2 � 50.8◦. Otherwise the amplitude grows on the leading flank.
Hence the symmetry-breaking evident in figures 4(a, b). The growth rate being
proportional to α2ε3 explains why symmetry breaking is less evident in the small-
amplitude simulations.

If cm is non-zero, the early evolution of large-amplitude wavepackets is determined
primarily by the second-order time-derivative

Utt |t=0 = 1
2
Nk secΘ{cmkA(2UZAZ + UZZA) + 1

2
cm

2
(
AZZ

2 − AAZZZZ

)
+ 1

18
cmm

2
(
AZZZ

2 + AAZZZZZZ

)
}. (5.2)

Thus linear dispersive effects, manifested through non-zero values of cm and cmm, are
necessary for U to change in time, even in the nonlinear regime.

At the centre of a Gaussian wavepacket

Utt |t=0,Z=0 = −1

2

N3

k
α2ε2

{
k2cm

N
secΘ

(
α2 +

k2cm

N
ε2

)
+

k6cmm
2

N2
secΘε4

}
. (5.3)

This is negative for all α and ε if cm is positive; that is, if |Θ | > sin−1(3−1/2) � 35.3◦.
So wavepackets that have frequency smaller than the frequency of waves with the
fastest vertical group speed are modulationally stable: nonlinear effects accentuate
the rate at which the amplitude decreases in time.

Now suppose |Θ | < sin−1(3−1/2). Assuming the wavepacket is so broad that the last
term in the braces on the right-hand side of (5.3) can be neglected, then Utt is negative
only if α2 + (k2cm/N)ε2 is negative. Explicitly, the stability boundary is

α

ε
=

√
cos3 Θ(1 − 3 sin2 Θ), (5.4)

as can be determined from standard modulation theory for the nonlinear Schrödinger
equation. This curve is plotted and modulational stability regimes are indicated in
figure 5. This figure also indicates growth and decay rates through the time scale τ ,
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which is defined by

τ ≡ sgn(Utt )
√

|U/Utt |
∣∣∣
t=0,Z=0

. (5.5)

A surprising result is that internal waves propagating with the maximum vertical
group speed are modulationally unstable due to weakly nonlinear effects even if
α/ε � 1. In dimensional units, this is the condition A0 � 1/(k2σ ).

6. Conclusions
We have shown that the early time evolution of a horizontally periodic, vertically

compact wavepacket is represented well by accounting only for interactions between
the waves and the wave-induced mean flow. The resulting weakly nonlinear equation
predicts that waves with frequencies between � 0.82N and N are unstable in
the sense that the amplitude envelope grows where the curvature is large and it
advances vertically at a slower rate. Large-amplitude waves with smaller frequency
disperse rapidly due to weakly nonlinear effects. Although fully nonlinear wavepackets
eventually break down due to parametric subharmonic instability, the simulations
presented here show that the weakly nonlinear equation accurately depicts the
wavepacket evolution beyond 15 buoyancy periods, which reasonably represents
the life cycle of large-amplitude non-hydrostatic waves in the atmosphere and ocean.

This work arose from discussions with T. Akylas, G. Carnevale and B. Young. The
research was supported by the Canadian Foundation for Climate and Atmospheric
Science (CFCAS).
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